The Mainz Energy Recovering Superconducting Accelerator –a suggestion for a versatile experimental arrangement based on a compact accelerator

> JLAB. June, 20, 2011 Kurt Aulenbacher for the B1,B2 and A4 collaborations at IKP Mainz

Outline

- MESA as research 'engine'
- Accelerator physics issues at MESA
- Polarimetry for MESA-PV

....the eight-fold way to achieve $\Delta P/P < 0.5\%$?

MESA surroundings

MESA accelerator project rationale

• Experiments require a new & innovative accelerator

- low energy (100-200MeV) \rightarrow therefore accelerator 'affordable'
- MAMI acc. team competence represents basis for development
- Project will be attractive for young students and researchers

Make use of innovations in SRF accelerator science:

Energy recovery linac (ERL)
 Improvements on high gradient-c.w.-SRF

Beam parameter goals in two **different** modes of operation:

- 1.) EB-mode External spin-polarized c.w. beam (EB-mode) at 137 MeV (Q²=0.005GeV/c at 30 degree). L>10³⁹ cm⁻²s⁻¹
- 2.) ERL-mode: 10mA at 100 MeV with L~10³⁵ cm⁻²s⁻¹

MESA-experiments:

1.) Parity violating elastic electron scattering

- Measurement of PV asymmetry at low Q² is sensitive to 'new physics'
- JLAB runs 'Q_{weak}' at Q²=0.02(GeV/c) E_{beam}=1.2GeV
- Exp. Asymmetry A_{exp}~ (1-4sin²(Θ_W))~140ppb (!)
- 3% Accuracy in $A_{exp} \rightarrow 0.5\%$ in $sin^2(\Theta_W)$
- model dependent corrections ~E₀

Improved parity experiment:

- low energy E_0 (small theory uncertainty)
- and even lower Q^2 (0.005(GeV/c)²)
- optimized for control of systematic contributions to A_{exp}
- exclusive machine access and low running costs

→ MESA' workhorse' experiment better statistics AND systematics: 1% Accuracy in A_{exp}→0.15% in sin²(Θ_W) H. Merkel et al. (A1 collab. at MAMI): suggest to measure e+/e- pair invariant mass with double spectrometer set up at MAMI.

MESA: Dedicated machine for $m_{A'}$ <100MeV with optimized background

MESA-experiments-3: Applied physics

High beam power electron beam may be used for:

- ERL-mode: Production of NV-nanodiamonds (e.g. medical markers)
- EB-mode: High brightness source of cold (polarized) positrons

Color: NV-centers introduced in Diamond. Irradiated at MAMI for 3 days, 50µA at 14MeV (J. Tisler et al. ACS NANO 3,7 p.1959 (2009))

7

VG

20.06.2011

MESA-Layout

EX-1 IN 22m PIT SC PS RC HW DU **EX-2** FW to PV-experiment 20.06.2011

KEY:

PS: Photosource (polarized or unpolarized beam) IN: 2.5-5 MeV – NC injector SC: 3 Superconducting cavities, @ 13 MV/m. Energy gain 34 MeV per pass. RC: Beam recirculation 3 times HW: Third recirculation option 'half wave': Energy Recovery Linac (ERL-) Mode FW: Third recirculation option: 'full wave' External Beam (EB-) mode PIT: Pseudo Internal target (ERL mode) PV: Parity violation experiment (EB-mode) DU: 2.5 MeV beam dump in ERL-mode EX: Experimental areas 1 and 2 Existing walls: 2-3m thick shielding **EXPERIMENTAL BEAM PARAMETERS:**

1.3 GHz c.w.

EB-mode: 150 μA, 137 MeV polarized beam (liquid Hydrogen target L~10³⁹)

ERL-mode: 10mA, 104 MeV unpolarized beam (Pseudo-Internal Hydrogen Gas target, L~10³⁵)

MESA-beam parameters in comparison

Project/Purpose (status)	Av. Beam current (mA)	# of Recirc.	Norm. emit. (μm)	Bunch charge (pC)	Time structure
MESA/ particle physics (under design)	10	2-3	1-10	7.7	1300 MHz c.w.
JLAB/ light source (achieved)	10	1	7	135	75 MHz, c.w.
BERLinPro/light source demonstrator (under design, funded)	100	1	1	77	1300 Mhz, c.w.
eRHIC/particle physics (under design)	50	6			

- MESA will not have to provide extreme bunch parameters (....is not a light source)
- New issue: multi-turn recirculation → MESA may be useful as a test-bench for LHeC, eRhic, or others....
- A challenge is compliance between ERL and EB operation
- costs,costs,costs! (minimize investment for cryogenics!)

Injector issues

Pro's for normal conducting injector:

- considerably lower cost, established design
- budget for cryogenics can be minimized
- RF/beam-power: ~ 3 at 10mA/5MV (300kW wallplug)
- compatibility between EB/ERL probably achievable

Spin rotation

Fig. 1. Wien-filter cross-section, length is in mm.

V. Tioukine, K.A. NIM A 568 537 (2006)

For PV helicity switch (independent from fast optical switch) is desirable \rightarrow realized at JLAB by double Wien (3-axis Spin roator for QWEAK)

Polarized injection layout

second part of pol. injector identical to MAMI

Recirculator challenges

- 10 mA in 2-3 fold SRF-recirculating system calls for specific HOM-control
- space & budget restrictions!
- So far no SRF infrastructure in house (but clean room & HPR... etc will be available)

PV is a simple experiment

Penalty for choosing low Q²: A_{PV} becomes very small (roughly 50 ppb)

- → Even at L>10³⁹ the experiment will need about 10000 hours BOT: Experiment cannot be done at MAMI without strong interference with ongoing program.
- → A_{False} must be controlled to <0.4 ppb: Improve established techniques from PVA4 by about an order of magnitude</p>
- → $\Delta A_{PV}/A_{PV} = 1\%$ → $\Delta P/P < 0.7\%$, better <0.5%.

Beam polarimetry is a simple experiment

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{0.\,proc} \cdot \left(1 + \sum_{i=x,y,z} S_i(\mathcal{G}) \cdot P_i^{Beam} + \sum_{i,j=x,y,z} S_{i,j}(\mathcal{G}) \cdot P_i^{Beam} P_j^T\right)$$
Processexamples: Elastic Electron (Mott-)scattering: S_y
Möller- or Compton - Backscattering: S_{zz}
A_{Mott} = P_y^{BEAM} S_y(\mathcal{G}, E...) ; A_{Möller} = P_z^{BEAM} P_z^{Target} S_{zz}(\mathcal{G}, E...) to be determined.

Desired::

1.) Online operation at experimental beam conditions,

2.)∆P/P <0.5%,

3.) fast polarization monitoring.

Probably the best approach: The "Hydro-Möller"-Polarimeter

- Online operation possible
- low Levchuk effect (Z=1 vs Z=26 conventional)
- very high P_TS_{zz}→ good efficiency in spite of low count rate statistics to 0.5% within about 30min
- $P^{Target}=1-\varepsilon \rightarrow small Target polarization error (<math>\varepsilon \sim 10^{-5}$)
- •Problem: Not realized yet→how does it work?

Principle of Hydro-Möller

Proposed by Chudakov&Luppov, Proceedings IEEE Trans. Nucl. Sc. 51 (2004)...

Solenoid traps pure H[↑] which has a long lifetime due to He-coating of storage cell. All other species are removed quickly from the trap. \rightarrow 1- ϵ Polarization can be reasonably well estimated, but not measured. \rightarrow Check these results by a different principle NOT based on estimation of an ,effective analyzing power' S_{eff}

A different aproach

$$A_{\exp} = P_{beam} \underbrace{CorrP_T S_0}_{S_{eff}}$$
 Corr = exp. motivated Correction

How to avoid the systematic errors caused by individual factors? Apparent attractiveness of Mott-scattering:

$$A_{exp} = P_{beam} \underbrace{CorrS^{y}}_{S_{eff}} \implies \text{No P}_{T} !$$

In **double** elastic scattering S_{eff} can be measured directly!

After scattering of unpolarized beam

$$\mathbf{P}_{\mathrm{sc}} = S_{eff}$$

(Equality of polarizing and Analyzing Power:)

After second "identical" scattering process

$$A_{\rm exp} = S^2_{eff}$$

(sounds simple but extremly difficult to elliminate apparative asymmetries and to provide 'identical'scattering) Claimed accuracy in $S_{eff} < 0.3\%$! 20.06.2011

More elaborated double scattering

1.) measurement : Pol beam on second target

 $A_1 = S_{eff} P_0$

2.) with 'auxiliary target': S_T ; + P_0

$$A_2 = P_T S_{eff} = \frac{S_T + \alpha P_0}{1 + S_T P_0} S_{eff}$$

 α = Depolarization factor for first Target 3.with 'auxiliary target': S_T; - P₀

$$A_{3} = P_{T} S_{eff} = \frac{S_{T} - \alpha P_{0}}{1 - S_{T} P_{0}} S_{eff}$$

4. unpolarized beam on aux. target

 $A_4 = S_T S_{e\!f\!f}$

5. Scattering asymmetry from auxiliary target

 $A_5 = P_0 S_T$

5 equations with four unknowns \rightarrow consistency check for apparative asymmetries!

20.06.2011

The MESA Spin chain ('The eightfold way')

•DSP measures polarization at 100kV

- tuning of spin angle at Hydro-Möller (and PV) by second Wien rotator.
- Depolarization in MESA <<10⁻³. (low energy!, no resonances)
- Monitoring, stability and cross calibration can be supported by extremely precise&fast 5 MeV Mott/Compton combination.
- In general, 8 polarization measurements required

Polarization Drift consistently observed in transvere AND longitudinal observable at the <0.5% level. Both polarimeters can be used over wide range covering operational regime of Hydro-Möller

Conclusion

- MESA operates in EB-mode for PV and in ERL-mode for Dark Photon experiment.
- Main cost factor building eliminated, other one –SRFreduced by multi-turn recirculation.
- PV requires extreme beam parameter stability
- ...and accurate polarization measurement by a polarimeter chain
- In ERL mode, the new issue is multi-turn recirculation

Back-ups

Emittance requiments

An emittance of $\leq 10 \mu m$ is the key for successful operation of DM-experiment With $t_{bunch} \ll t_{accel}$ we have a lower limit for emittance at the cathode

$$\varepsilon_{\min} = \sqrt{\frac{q_{bunch}(E_{\gamma} - W)}{6\pi\varepsilon_{0}E_{cath}mc^{2}}} \sim <0.2\,\mu m @ 7.7\,pC @ 1MV / m$$
$$(E_{\gamma} - W) \sim 0.4eV (\text{KCsSb}), \ 0.1eV(\text{NEA - GaAs})$$

But: vacuum space charge destroys beam emittance by nonlinearity of forces!

Countermeasures:

1.) accelerate with high field to relativistic velocities because $F_q \sim 1/\gamma^2$. ERL-d.c guns ~6MV/m to 0.25-0.5 MeV SRF gun with 15MV/m to ~ 5 MeV (FZD, future: BERLinPRO) 2.) Note: d.c. acceleration allows long bunches without any correlation between phase and energy &d.c acceleration allows for low longitudinal charge densi Example MAMI-A (1979, with van de Graaf generator) 1.5MV/m to 2MeV (γ =5) at 40ps length with subsequent bunch compression to 4ps. \rightarrow MESA baseline: γ =2 electrostatic acceleration with E>1MV/m Modern times: Laser will provide 40-100ps bunches, power supply (e.g. ICT, now available at 2MV with 20kW \rightarrow HIM/FZJ ,cooler'-collaboration) will replace van de Graaf

405nm Laser

- Advantage of 405 nm: KCsSb QE~30mA/Watt. Cost ~ 3k€/watt (d.c.);
- optimum beam quality: 1mm dia-spot at 1m only with collimation tube!
- electron gun current presently limited by power supply (<3mA)
- Diode is well suited for pulsing at GHz-frequencies , (<40ps at full power)
- Could provide ~1W (40ps, r.f. synchronized) for MESA (1 lifetime 'overhead')

 \rightarrow five DVD-player diodes in parallel!

Lifetime issue

Milliampere- test experiment with NEA-GaAs

GaAs operation would be possible, but inconvenient

• long lifetime required \rightarrow KCsSb (unpolarized) photocathode

PCA fabrication chamber at Mainz-HIM

- •KCsSb technology available at Mainz
- good results >30mA/Watt (>10% Q.E)
- evidence for *100 stability increase with respect to GaAs (2000 hours at 10mA?)

Quantum Efficiency of K₂SbCs cathode at Cu substrate

Stability issues

Longitudinal stability due to long. dispersion!

Transverse stability if 'Herminghaus Criterion' is followed E_{inj}/E_{out} <10 Practical criterion $E_{out} = (E_{INJ} + \Delta E)^*$ (diameter magnet/diameter first orbit) \rightarrow practical first orbit diameter > cryostat radius ~0.4m

 \rightarrow analyze for our case.

20.06.2011

Microtron based solution

RTM-2 stage is the weakest point in the existing cascade \rightarrow high potential for GAIN in stability!

	Purpose	B/T	N	ΔE	E _{inj} +∆E	2*R0	Rez.	E _{out}	Power/
				MeV	MeV				current
	PV/high E	0.5	1	5.5	30	0.40	28	180	27kW/0 .15
2	ERL	1.4	2	30.8	40	0.20	2	102	100/10

Conclusions

- Due to the non-extreme bunch parameters MESA does not require the same amount of investment as the light-source demonstrator machines
- Challenge is the compatibility between PV and ERL, but promising approaches exist.

DM: Focusing through the PIT

$$\varepsilon_{\text{Norm}} = 10 \mu m \text{ (or } 3.2 \ \pi \text{ mm} * \text{mrad} * \text{m}_{\text{e}}\text{c} \text{)} \text{ (MESA goal)}$$

$$\varepsilon_{\text{Geo}} = \frac{\varepsilon_{\text{Norm}}}{\sqrt{\gamma^2 - 1}} \implies \varepsilon_{\text{Geo}} (100 \text{MeV}) \sim 50 \text{nm}.$$

Beam diameter as a function of optical function β :

$$\mathbf{r}_{_{\text{beam}}}^{2}(z) = \varepsilon_{Geo} * \beta(z)$$

in the field free region around symmetry point $z^* = 0$

$$\beta(z) = \beta(z^*) + \frac{z^2}{\beta(z^*)} = \beta^* (1 + (z/\beta^*)^2) \text{ choose: } \beta^* = 1m$$

 \Rightarrow Maximum beam diameter ≤ 0.62 mm over 2 Meters of length

DM: Focusing through the PIT

Assuming target density N=2*10¹⁸ atoms/cm⁻² (3.2 μ g/cm², 5*10⁻⁸ X₀) we have (at I₀=10⁻² A) luminosity of L= I₀/e*N=1.2*10³⁵cm⁻²s⁻¹

 \rightarrow (average) ionization Energy loss: ~ 17eV

 \rightarrow could allow to recuperate more energy than in conventional ERL (2.5MeV).

- \rightarrow RMS scattering-angle (multiple Coulomb scattering): 10µrad
- → single pass beam deterioration is acceptable Note: storage ring: beam emittance lifetime ~ 10milliseconds (stationary vs. variable background...)

 \rightarrow beam halo & long tails of distribution due to Coulomb scattering have to be studied